HOCHTEMPERATURWOLLE

Ultraleichtes Isoliermaterial für Wärmedämmung bis 1650°C

ALTRA®

Exzellent bis 1650°C

ALTRA® ist eine hochreine, polykristalline Wolle mit exzellenten thermischen und mechanischen Eigenschaften, die in einem Sol-Gel-Prozess ohne Verwendung von Bindemitteln hergestellt wird. Dadurch bietet ALTRA® Hochtemperaturwolle eine praktisch unendliche Temperaturwechselbeständigkeit und ist somit für periodisch betriebene Anlagen hervorragend geeignet. RATH ist der einzige Anbieter, der polykristalline Wolle in drei Qualitäten mit einem Aluminiumoxidanteil von 72 %, 80 % und 97 % herstellt. Die Produkte zeichnen sich besonders für den Einsatz im Hochtemperaturbereich bis 1650 °C aus und bieten ein breites Spektrum von Anwendungsmöglichkeiten.

ALSITRA®

Universell bis 1300°C

Der optimale Anwendungsbereich von Alsitra® liegt in industriellen Verfahren bei denen Temperaturen bis $1300\,^{\circ}$ C herrschen. Alsitra® wird unter Verwendung reinster Rohstoffe im Schmelzverfahren hergestellt.

CALSITRA®

Stark bis 1000°C

CALSITRA® wird bei Temperaturen bis 1000 °C eingesetzt. Die Rohstoffbasis für diese Qualität sind Alkali- und Erdalkalisilikate. Die Eignung ist für den jeweiligen Einsatz vorab zu prüfen, weil die Verwendung von Calsitra® Hochtemperaturwolle auf spezielle Anwendungsgebiete zugeschnitten ist.

HOCHTEMPERATURWOLLE

Durch ihre hervorragenden Eigenschaften wirkt Hochtemperaturwolle besonders energiereduzierend und eignet sich hervorragend für Einsätze mit rasch wechselnden Aufheiz- und Abkühl-Zyklen.

Durch die gezielte Kombination physikalischer Eigenschaften wirkt Hochtemperaturwolle besonders energiereduzierend und stellt in Kombination mit gängigen Feuerfestmaterialien wie Steinen und Betonen die ideale Ergänzung einer kompletten Feuerfestzustellung dar.

DIE VORTEILE VON HOCHTEMPERATURWOLLE

- unendliche Temperaturwechselbeständigkeit
- niedrige Wärmeleitfähigkeit
- hohe chemische Resistenz

ALTRA® Polykristalline Wolle (PCW) AluminiumOxid-Wolle Mullit-Wolle

Rath 3

HOCHTEMPERATURWOLLE

EIGENSCHAFTEN		ALTRA B 72	ALTRA B 80	ALTRA B 97 HA	ALSITRA 1300	ALSITRA 1400	ALSITRA 1400Z
Rohstoffbasis		Aluminiumoxid, Aluminiumsilikat					
Klassifikationstemperatur [°C]		1650	1600	1600	1300	1400	1400
Daueranwendungstemperatur [°C]		1650	1600	1600	<1150	<1250	<1300
Bleibende	1100°C	_			-2,0		_
Längenänderung [%]	1200°C				-3,0	-2,0	-1,0
(24h bei geg. Temperatur)	1300°C	-	_	_	-4,0	-3,0	-1,6
(2 mbergegi remperatar)	1400°C	-	-1,0	-2,0		-4,0	<-4,0
	1500°C	-1,0	-2,0	-3,0	-	_	-
	1600°C	-2,0	-3,0	-4,0	-	-	-
Chemische Analyse [%]							
DIN EN 955-2; 4	Al_2O_3	72	80	97	48	54	37
	SiO ₂	28	20	3	52	46	48
	ZrO ₂		-		_		15
	MgO	-	-	-	-	-	-
Wärmeleitfähigkeit	400°C	0,09	0,09	0,10	0,11	0,11	0,08
[W/mK]	600°C	0,13	0,13	0,16	0,15	0,15	0,12
	800°C	0,19	0,19	0,25	0,21	0,21	0,18
(Heizdrahtverfahren) DIN EN 993-14	1000°C	0,28	0,28	0,39	0,31	0,31	0,20
	1200°C	0,41	0,41	0,62	0,44	0,44	0,36
	1400°C	0,61	0,61	0,97	-	0,64	_
Bei Rohdichte [kg/m3]		100	100	100	128	128	128

MATTEN

AUS ALTRA®, ALSITRA® UND CALSITRA®

Matten werden direkt im Herstellungsprozess durch Vernadeln der Wolle produziert. Bei diesem Verfahren kommt kein Bindersystem zum Einsatz. Dadurch sind Matten aus Hochtemperaturwolle von RATH frei von organischen Bestandteilen.

Diese Technik erlaubt es, Matten mit definierten Dicken, Dichten und Abmessungen herzustellen. Das Material ist so miteinander verwirkt und bleibt frei von organischen Bestandteilen. Mattendicken bis zu 50 mm und Längen bis zu 21 m werden standardmäßig in Abhängigkeit von der Dichte produziert. Dichten bis zu 160 kg/m³ können erreicht werden. RATH bietet Stanzteile und Zuschnitte nach Kundenwunsch an.

HOCHTEMPERATURMATTE

EIGENSCHAFTEN		ALTRA MAT-72	ALTRA MAT-80	ALTRA MAT-97	ALSITRA MAT-1300	ALSITRA MAT-1400	ALSITRA MAT-1400Z	CALSITRA MAT 1250
Rohstoffbasis				Aluminiumsilil	kat, Aluminiumoxi	d, Erdalkalisilikat		
Klassifikationstemperatur [°C]		1650	1600	1500	1300	1400	1400	1250
Daueranwendungstemperatur [°C]		1650	1600	1500	<1150	<1250	<1300	<1100*
Rohdichte [kg/m³]		60-120	60-120	60-100	96-160	96-160	96-160	96-128
Bleibende	1100°C	-	-	-	-2,0	_	-1,0	-
Längenänderung [%]	1200°C			-	-3,0	-2,0	-1,6	-3,0
(24h bei geg. Temperatur)	1300°C	-	-	-	-4,0	-3,0	-3,2	_
(24nbergeg. remperatur)	1400°C	_	-1,0	-2,0		-4,0	<-4,0	_
	1500°C	-1,0	-2,0	-4,0	-	_	-	-
	1600°C	-2,0	-3,0	-5,0	-	_	_	
Chemische Analyse [%]	Al ₂ O ₃	72	80	97	48	54	37	-
DIN EN 955-2; 4	SiO ₂	28	20	3	52	46	48	 75 - 82
	CaO			_		_		_
	MgO	_	_	_			_	18 - 25
	ZrO ₂	_	-	_	-	_	15%	_
Wärmeleitfähigkeit [W/mK]	400°C	0,09	0,09	0,10	0,11	0,11	0,08	-
	600°C	0,13	0,13	0,16	0,15	0,15	0,12	0,14
(Heizdrahtverfahren) DIN EN 993-14	800°C	0,19	0,19	0,25	0,21	0,21	0,18	0,23
	1000°C	0,28	0,28	0,39	0,31	0,31	0,20	0,34
	1200°C	0,41	0,41	0,62	0,44	0,44	0,36	0,48
	1400°C	0,61	0,61	0,97	0,64	0,64	-	_
Bei Rohdichte [kg/m3]		100	100	100	128	128	128	128

^{*} in nicht korrosiver Ofenatmosphäre

FÜR MATTEN GIBT ES VIELFÄLTIGE ANWENDUNGEN:

- Auskleiden von Ofenwänden
- Ausgangsmaterial f
 ür Modulherstellung
- Kompensationsstreifen im Ofenbau
- Dichtungen
- Schalldämpfung bei hohen Temperaturen

MODULE

AUS ALTRA®, ALSITRA® UND CALSITRA®

Module werden aus parallel angeordneten Altra®, Alsitra® oder Calsitra® Mattenstreifen hergestellt und auf die erforderliche Moduldichte verpresst. Die Verdichtung der Module kompensiert die eventuell auftretende Schwindung.

Alsitra® Module vernäht

DIE VORTEILE VON HTW-MODULEN:

- Einfache Montage
- Hohe Verlegeleistung
- Keine Spezialwerkzeuge notwendig
- Geschweisste oder geschraubte Anker möglich
- Kontrolle des Ankersitzes bevor dieser verdeckt wird
- Kontrolle der Verdichtung der Module
- Ausgleich von Unebenheiten am Ofengehäuse leicht möglich
- Leichte Austauschbarkeit beschädigter Module

Einfache Befestigungssysteme erleichtern die Installation von Modulzustellungen.

Die Montage von Modulen erfolgt entweder mit Hilfe von Kammankern, auf die die Module einzeln gesteckt werden, oder durch Verklebung mit Kerathin® Kleber direkt auf Steinauskleidungen oder auf Streckmetalle. Die Auswahl des Ankers bzw. Klebers ist mitentscheidend für die Lebensdauer der Auskleidung.

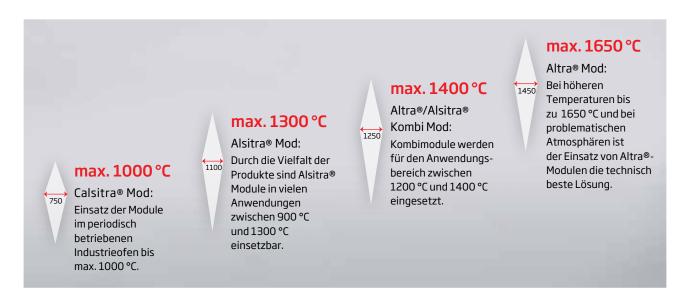
Altra®-Module werden seitlich mit Platten oder Blechen komprimiert, um die Formstabilität des Moduls bis zur Installation zu gewährleisten. Alsitra® und Calsitra® Module sind Kordelmodule, die zur leichteren Montage vernäht sind.

Die Komprimierungselemente werden nach fertiger Montage entfernt. Die Module dehnen sich aus und es entsteht eine geschlossene, feuerfeste Zustellung in der Anlage.

MODULE

EIGENSCHAFTEN		ALTRA Mod	ALSITRA Mod	CALSITRA Mod
Rohstoffbasis		Altra Mat 72 Altra Mat 80	Alsitra Mat 1300 Alsitra Mat 1400	Calsitra Mod 1250
		Altra Mat 97	Alsitra Mat 1400Z	
Daueranwendungstemperatur [°C] abhängig von Dichte und chemischer Zusammensetzung		<1650	<1300	<1000
Rohdichte [kg/m³]		100 - 180	140 - 240	140 - 200
Dimensionen	Länge [mm]	50 - 1200	50 - 1200	50 - 1200
	Breite [mm]	80 - 600	80 - 600	80 - 600
	Höhe [mm]	50 - 600	50 - 600	50 - 600

Sonderabmessungen auf Anfrage


KOMBI-MODULE

Kombi-Module ohne Fremdstoffzusatz wurden von RATH entwickelt und stellen durch das RATH-spezifische Verbindungssystem eine einzigartige Form der Modulzustellung im Bereich von 1200° C – 1400° C dar.

Kombi-Module bestehen aus zwei unterschiedlichen Mattentypen wie Altra® -Alsitra® oder Altra® -Calsitra®.

Dadurch kann ein sehr spezifisches Temperaturbereich abgedeckt werden der im Zusammenspiel mit reinen Altra-, Alsitra- oder Calsitra-Modulen eine optimale und sehr effiziente Zustellungsform darstellt.

Durch das RATH-spezifische Verbindungssystem, das ohne Zugabe von Fremdstoffen auskommt, bieten Kombi-Module ebenfalls eine unendliche Temperaturwechselbeständigkeit.

KOMBI-MODULE

EIGENSCHAFTEN		ALTRA Kombi Mod ALTRA/ALSITRA	ALTRA Kombi Mod ALTRA/CALSITRA
Rohstoffbasis		Altra Mat 72/ Alsitra Mat 1400 Altra Mat 97/ Alsitra Mat 1400	Altra Mat 72/ Calsitra Mat 1250 Altra Mat 97/ Calsitra Mat 1250
Daueranwendungstemperatur [°C] abhängig von Dichte und chemischer Zusammensetzung		<1400	<1300
Rohdichte [kg/m³] Alsitra/		140/180	140/180
Anteil Altra [mm]		50, 75, 100, 125	50, 75, 100, 125
Dimensionen	Länge [mm]	200 - 600	200 - 600
	Breite [mm]	150 - 450	150 - 450
	Höhe [mm]	250 - 300	250 - 300

Sonderabmessungen auf Anfrage

PAPIER

AUS HOCHTEMPERATURWOLLE

Papier aus Hochtemperaturwolle ist ein Hilfsmittel in der Feuerfestzustellung und wird im Langsiebverfahren unter einer Zugabe von geringen Mengen anorganischem und organischem Binder wie z. B. Latex hergestellt.

Hochtemperaturpapier

HOCHTEMPERATURPAPIER

EIGENSCHAFTEN		ALTRA KP 1600	ALSITRA KP1250	ALSITRA KP 1400	CALSITRA CP 1250	
Rohstoffbasis	Aluminiumsilikat, Aluminiumoxid, Erdalkalisilikat					
Klassifikationstemperatur [°C]		1600	1250	1400	1250	
Daueranwendungstemperatur [°C]		<1500	<1150	<1250	1100	
Rohdichte [kg/m³]		>150	>200	>200	> 200	
Chemische Analyse [%] DIN EN 955-2; 4	Al ₂ O ₃	>88	>46	>48	-	
nach Ausbrand	SiO ₂	<12	<54	<52	70 - 80	
	CaO/MgO	_	_	-	18 - 25	

So entstehen elastische Papiere, die in Dicken von 0,5 mm bis 6 mm als Rollenware angeboten werden. Die Weiterverarbeitung erfolgt durch Schneiden (zu Streifen unterschiedlicher Breite und Länge) oder durch Stanzen.

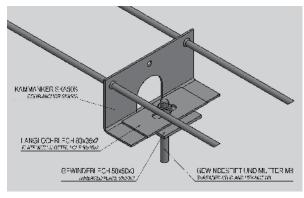
Entsprechend der im Papier enthaltenen Rohstoffbasis werden die Papiere bezeichnet:

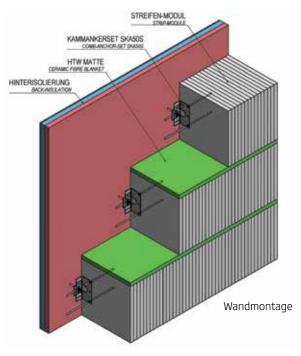
- Altra® KP sind Papiere auf Basis von polykristalliener Wolle.
- Alsitra® KP sind Papiere auf Basis von Aluminiumsilikatwolle
- Calsitra® CP sind Papiere auf Basis von Erdalkalisilikatwolle

Das Papier Altra® KP zeichnet sich neben der hohen Temperaturbeständigkeit durch eine sehr glatte Oberfläche aus. Aus diesem Grund wird es in Prozessen eingesetzt, bei welchen eine Beschädigung der Oberfläche des Produkts vermieden werden muss (Glasfusing).

ULTRALEICHT ZU MONTIEREN

Neben Standardabmessungen sind auch Module mit komplexen Konturen lieferbar.


Alsitra® und Calsitra®-Module werden als Kordelmodule geliefert. Bei Kombi- und Altra®-Modulen gewährleisten seitliche Platten oder Bleche die Formstabilität des Moduls bis zur Installation. Durch Kammanker lassen sich die Module in kurzer Zeit und ohne spezielles Werkzeug einfach montieren. Nach der Montage werden die Komprimierungssysteme gelöst und entfernt.


Hinterisolierung

Deckenmontage von Altra® Modulen

Befestigungsanker

EIN WEITES ANWENDUNGSSPEKTRUM

Hochtemperaturwolle und Module werden meistens in Kombination mit anderen Feuerfestmaterialien wie Feuerfest-Steinen und Betonen eingesetzt. Dadurch wird eine optimale Lösung für die jeweilige Anforderung in Bezug auf mechanische und chemische Belastbarkeit sowie Temperaturwechselbeständigkeit erzielt.

Drehofen

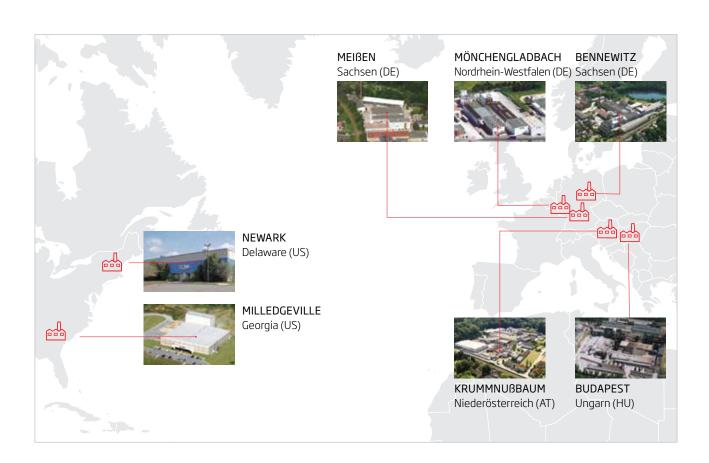
Kombinierte Zustellung: Feuerfest-Steine, Betonformteile, HTW-Module (Decke)

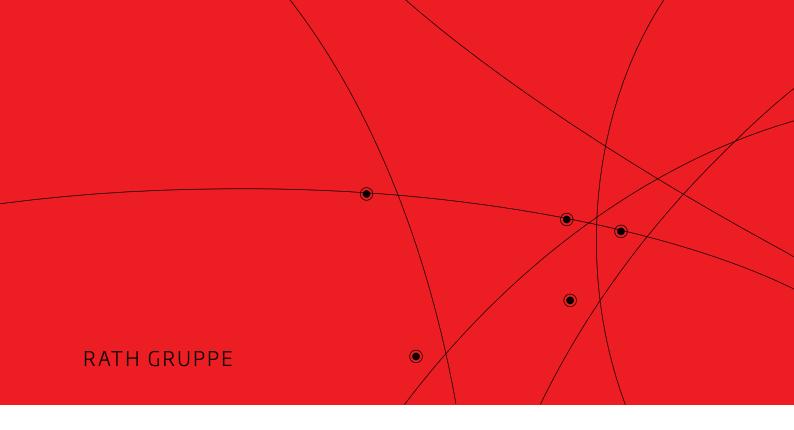
HTW Zustellung für Herdwagenofen

Kombination Beton-Formteil und HTW-Module

Abgaskammer mit L-Modulen

Module aus Hochtemperaturwolle werden erfolgreich in der Stahl-, Keramik- und chemischen Industrie eingesetzt.


Module aus Hochtemperaturwolle bewähren sich vor allem bei diskontinuierlich betriebenen Industrieöfen, Nachverbrennungsanlagen und Spezialanwendungen.


Auf Grund seiner Leistungsfähigkeit bietet der Werkstoff Hochtemperaturwolle heute zunehmend innovative Lösungen für unterschiedlichste Problemstellungen im Bereich der Hochtemperatur-Technologie.

KOMPETENZZENTRUM MÖNCHENGLADBACH

Die Fertigung von Hochtemperaturwolle im Werk Mönchengladbach ist in Europa einzigartig. Neben der hier ansässigen Kompetenz im Bereich Entwicklung- und Verfahrenstechnik werden in zwei hochspezialisierten Fertigungslinien zur Herstellung der Wolle auch nachgelagert alle Endprodukte der Produktreihen Altra®, Alsitra® und Calsitra® endgefertigt.

Qualität ist bei RATH kein Schlagwort, sondern gelebte Firmenkultur. Jeder Mitarbeiter bei RATH strebt aus persönlichem Antrieb nach der optimalen Lösung – so lange, bis diese erreicht ist.

UNSERE VERTRIEBSNIEDERLASSUNGEN

ÖSTERREICH

RATH AG

Walfischgasse 14 A-1015 Wien

T +43 (1) 513 44 27-0

F +43 (1) 513 44 27-2187

AUG RATH JUN. GMBH

Hafnerstraße 3

A-3375 Krummnußbaum

T +43 (2757) 2401 - 0

F +43 (2757) 2401 - 2286

RATH FILTRATION GMBH

Walfischgasse 14

A-1015 Wien

T +49 (3521) 46 45 10

UNGARN

RATH HUNGARIA KFT.

Porcelán utca 1

H-1106 Budapest

T +36 (1) 433 00 40

F +36 (1) 261 90 52

POLEN

RATH POLSKA SP. Z 0.0.

ul. Budowlanych 11

PL-41 303 Dąbrowa Górnicza

T +48 (32) 268 47 01

F +48 (32) 268 47 02

DEUTSCHLAND

RATH GMBH

Ossietzkystraße 37/38 D-01662 Meißen

T +49 (3521) 46 45-0

F +49 (3521) 46 45-88

Krefelder Straße 680-682 D-41066 Mönchengladbach

T +49 (2161) 96 92-0

F +49 (2161) 96 92-61

Leulitzer Straße 6D D-04828 Bennewitz

T +49 (3425) 89 48-0

F +49 (3425) 89 48-4313

TSCHECHIEN

RATH ŽÁROTECHNIKA SPOL.SR.O.

Vorlesská 290

CZ-544 01 Dvůr Králové n. L.

T +420 (499) 32 15 77

F +420 (499) 32 10 03

UKRAINE

RATH UKRAINA

49040 Dnepropetrowsk

ul. Kosmitscheskaya 49B

T +380 (56) 785-30-35

F +380 (56) 785-30-36

USA

RATH USA INC.

290 Industrial Park Drive Milledgeville, GA 31061, USA

T +1 (478) 452 0015

F +1 (478) 452 0070

300 Ruthar Drive Suite 1 Newark, DE 19711, USA

T +1 (302) 294 44 46

F +1 (302) 294 44 51

MEXICO

RATH GROUP S. DE RL. DE C.V.

Av. Adolfo Ruiz Cortines #2700-14 Col. La Esperanza CP 67192, Guadalupe N.L. Mexico

T +52 81 14 31 15 90

WWW.RATH-GROUP.COM INFO@RATH-GROUP.COM